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Abstract

Since MATLAB is very popular in industry and academia, and is frequently used

by chemometricians, statisticians, chemists, and engineers, we introduce a MATLAB

library of robust statistical methods. Those methods were developed because their

classical alternatives produce unreliable results when the data set contains outlying

observations. Our toolbox currently contains implementations of robust methods for

location and scale estimation, covariance estimation (FAST-MCD), regression (FAST-

LTS, MCD-regression), principal component analysis (RAPCA, ROBPCA), princi-

pal component regression (RPCR), partial least squares (RSIMPLS) and classification

(RDA). Only a few of these methods will be highlighted in this paper. The toolbox

also provides many graphical tools to detect and classify the outliers. The use of these

features will be explained and demonstrated through the analysis of some real data

sets.

Keywords: Robustness, Multivariate calibration, PCA, PCR, PLS, Classification,

MATLAB library.

1 Introduction

The need and effectiveness of robust methods has been described in many papers and books,

see e.g. [1, 2, 3]. Robust methods are developed because atypical observations in a data

∗Universiteit Antwerpen, Departement Wiskunde-Informatica, Middelheimlaan 1, B-2020 Antwerpen,

sabine.verboven@ua.ac.be
†Katholieke Universiteit Leuven, Departement Wiskunde, W. de Croylaan 54, B-3001 Leuven,

mia.hubert@wis.kuleuven.ac.be

1



set heavily affect the classical estimates. Consider for example, estimating the center of the

following univariate data set: (10 10.1 10.1 10.1 10.2 10.2 10.3 10.3). For these data, the

classical mean is 10.16 whereas the robust median equals 10.15. They do not differ very

much as there are no outliers. However, if the last measurement was wrongly recorded as

103 instead of 10.3, the mean becomes 21.75 whereas the median still equals 10.15. As in

this example, outliers can occur by mistake (misplacement of a comma), or e.g. through

a malfunction of the machinery or a measurement error. These are typically the samples

that should be discovered and removed from the data unless one is capable to correct their

measurements. Another type of atypical observations are those that belong to another pop-

ulation than the one under study (for example, by a change in the experimental conditions)

and often they reveal unique properties. Consequently, finding this kind of outliers can lead

to new discoveries. Outliers are thus not always wrong or bad, although this terminology is

sometimes abusively used.

Over the years, several robust methods became available in SAS [4] and S-PLUS/R [5],

[6]. To make them also accessible for MATLAB users, we started collecting robust methods

in a MATLAB library. The toolbox mainly contains implementations of methods that have

been developed at our research groups at the University of Antwerp and the Katholieke

Universiteit Leuven. It currently contains functions for location and scale estimation, co-

variance estimation (FAST-MCD), regression (FAST-LTS, MCD-regression), principal com-

ponent analysis (RAPCA, ROBPCA), principal component regression (RPCR), partial least

squares (RSIMPLS) and classification (RDA).

In this paper we will highlight some methods of the toolbox and apply them to real data

sets. We distinguish between low and high-dimensional data since they require a different

approach. The application of robust methods not only yield estimates which are less in-

fluenced by outliers, they also allow to detect the outlying observations by looking at the

residuals from a robust fit. That’s why we have included in our toolbox many graphical

tools for model checking and outlier detection. In particular we will show how to interpret

several diagnostic plots that are developed to visualize and classify the outliers.

In Section 2 a few estimators of location, scale and covariance (including PCA) will be

considered. Some robust regression methods are discussed in Section 3. Robust classification

is illustrated in Section 4. Finally, Section 5 contains a list of the currently available main

functions.
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2 Location, scale and covariance estimators

2.1 Low dimensional estimators

Robust estimators of location and scale for univariate data include the median, the median

absolute deviation, and M-estimators. In our toolbox we have included several methods

which are described in [7] (and references therein). Also the medcouple, which is a robust

estimator of skewness [8], is available. Here, we will concentrate on the problem of location

and covariance estimation of multivariate data as it is the cornerstone of many multivariate

techniques such as PCA, calibration and classification.

In the multivariate location and scatter setting we assume that the data are stored in an

n × p data matrix X = (x1, . . . , xn)T with xi = (xi1, . . . , xip)
T the ith observation. Hence

n stands for the number of objects and p for the number of variables. In this section we

assume in addition that the data are low-dimensional. Here, this means that p should at

least be smaller than n/2 (or equivalently that n > 2p).

Robust estimates of the center µ and the scatter matrix Σ of X can be obtained by the

Minimum Covariance Determinant (MCD) estimator [9]. The MCD method looks for the

h(> n/2) observations (out of n) whose classical covariance matrix has the lowest possible

determinant. The raw MCD estimate of location is then the average of these h points,

whereas the raw MCD estimate of scatter is their covariance matrix, multiplied with a

consistency factor. Based on these raw MCD estimates, a reweighting step can be added

which increases the finite-sample efficiency considerably [10].

The MCD estimates can resist (n− h) outliers, hence the number h (or equivalently the

proportion α = h/n) determines the robustness of the estimator. The highest resistance

towards contamination is achieved by taking h = [(n + p + 1)/2]. When a large proportion

of contamination is presumed, h should thus be chosen close to αn with α = 0.5. Otherwise

an intermediate value for h, such as 0.75n, is recommended to obtain a higher finite-sample

efficiency. This is also the default setting in our MATLAB implementation. It will give

accurate results if the data set contains at most 25% of aberrant values, which is a reasonable

assumption for most data sets.

The computation of the MCD estimator is non-trivial and naively requires an exhaustive

investigation of all h-subsets out of n. In [10] a fast algorithm is presented (FAST-MCD)

which avoids such a complete enumeration. It is a resampling algorithm which starts by

3



drawing 500 random p + 1 subsets from the full data set. This number is chosen to ensure a

high probability of sampling at least one clean subset. The mcdcov function in our toolbox is

an implementation of this FAST-MCD algorithm. Note that the MCD can only be computed

if p < h, otherwise the covariance matrix of any h-subset has zero determinant. Since n/2 <

h, we thus require that p < n/2. However, detecting several outliers becomes intrinsically

delicate when n/p is small as some data points may become coplanar by chance. This is an

instance of the “curse of dimensionality”. It is therefore recommended that n/p > 5 when

α = 0.5 is used. For small n/p it is preferable to use the MCD with α = 0.75.

With our toolbox the reweighted MCD-estimator of a data set X is computed by typing

>> out=mcdcov(X)

at the command line. Doing so, the user accepts all the default settings: α = 0.75, ‘plots’=1,

‘cor’=0, ‘ntrial’=500. It means that diagnostic plots will be drawn, no correlation matrix

will be computed and the algorithm uses 500 random initial p + 1 subsets.

If the user wants to change one or more of these default settings, the input arguments

and their new values have to be specified. Assume for example that we have no idea about

the amount of contamination and we prefer to apply a highly robust method. If in addition,

we are interested in the corresponding MCD correlation matrix, we set:

>> out=mcdcov(X,‘alpha’,0.50,‘cor’,1)

Similar to all MATLAB built-in graphical functions, we have chosen to work with variable

input arguments. More precisely, the input arguments in the function header consist of N

required input arguments and a variable range of optional arguments

>> result = functionname(required1,required2,...,requiredN,varargin)

Depending on the application, required input arguments are e.g. the design matrix X, the

response variable y in regression, the group numbers in a classification context etc. The

function call should assign a value to all the required input arguments in the correct order.

However, the optional arguments can be omitted (which implies that the defaults are used)

or they can be called in an arbitrary order. For example,

>> out=mcdcov(X,‘cor’,1,‘alpha’,0.50)

or
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>> out=mcdcov(X,‘cor’,1,‘alpha’,0.50,‘plots’,1)

would produce the same result. All our main functions use these user-friendly variable

input arguments. Standard MATLAB functions on the other hand (except the graphical

ones) contain all the input arguments in an ordered way such that none of the in-between

arguments can be left out.

The output of mcdcov (and of many other functions in the toolbox) is stored as a struc-

ture. A structure in MATLAB is an array variable which can contain fields of different types

and/or dimensions. If a single output variable is assigned to the mcdcov function, the given

solution is the reweighted MCD-estimator. To obtain the results of the raw MCD estimator,

a second output variable has to be assigned

>> [rew,raw]=mcdcov(X)

The structure and content of the output variable(s) is explained in the next example.

Example 1: To illustrate the MCD method we analyze the Stars data set [3]. This is a

bivariate data set (p = 2) where the surface temperature and the light intensity of n = 47

stars were observed. The data were preprocessed by taking a logarithmic transformation of

both variables. Applying ‘out=mcdcov(X)’ yields the following output structure:

center : [4.4128 4.9335]

cov : [2× 2 double]

cor : []

h : 36

alpha : 0.7500

md : [1× 47 double]

rd : [1× 47 double]

flag : [1× 47 logical]

cutoff : [1× 1 struct]

plane : []

method : [1× 42 char]

class : ′MCDCOV′

classic : 0

X : [47× 2 double]
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Here, the output consists of several fields that contain the location estimate (‘out.center’),

the estimated covariance matrix (‘out.cov’) and eventually the correlation matrix (‘out.cor’).

Other fields such as ‘out.h’ and ‘out.alpha’ contain information about the MCD method,

while some of the components (e.g. ‘out.rd’, ‘out.flag’, ‘out.md’ and ‘out.cutoff’) can be

used for outlier detection and to construct some graphics. The ‘out.class’ field is used by

the makeplot function to detect which figures should be created for this analysis. Detailed

information about this output structure (and that of the raw estimates) can be found in the

help-file of the mcdcov function.

The robust distance of an observation i is used to detect whether it is an outlier or not.

It is defined as

RDi =

√
(xi − µ̂MCD)T Σ̂

−1

MCD(xi − µ̂MCD) (1)

with µ̂MCD and Σ̂MCD the MCD location and scatter estimates. This robust distance is the

straightforward robustification of the Mahalanobis distance

MDi =

√
(xi − x̄)T S−1(xi − x̄) (2)

which uses the classical mean x̄ and empirical covariance matrix S as estimates of location

and scatter. Under the normal assumption, the outliers are those observations having a

robust distance larger than the cutoff-value
√

χ2
p,0.975, and they receive a flag equal to zero.

The regular observations whose robust distance does not exceed
√

χ2
p,0.975 have a flag equal

to one.

Based on the robust distances and the Mahalanobis distances, several graphical displays

are provided to visualize the outliers and to compare the robust and the classical results.

One of them is the distance-distance plot [10] which displays for each observation its robust

distance RDi versus its Mahalanobis distance MDi. A horizontal and a vertical line are

drawn at the cut-off value
√

χ2
p,0.975. For the stars data, we obtain Figure 1(a) with the

cutoff-lines drawn at 2.72. Looking at Figure 1(a) we clearly see four outlying observations:

11, 20, 30 and 34. Those four observations are known to be giant stars and hence strongly

differ from the other stars in the main sequence. Both a classical and a robust analysis

would identify these observations as they exceed the horizontal and the vertical cut-off line.

Further we observe 3 observations (7, 9, and 14) with a large robust but a small Mahalanobis

distance. They would not be recognized with a classical approach.

As this data set is bivariate, we can understand its structure much better by making a
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scatter plot as in Figure 1(b). Superimposed is the 97.5% robust confidence ellipse defined as

the set of points whose robust distance is equal to
√

χ2
p,0.975. Obviously, observations outside

this tolerance ellipse then correspond with the outliers. We again notice the 7 outliers found

with the MCD method.
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Figure 1: Analysis of the Star data set : (a) distance-distance plot ; (b) data with 97.5%

tolerance ellipse.

Note that these plots are automatically generated by the mcdcov function. Unless the

input argument ‘plots’ is set to 0, all the main functions call the makeplot function at the

end of the procedure. A small menu with buttons is then displayed, from which the user can

choose one, several, or all available plots associated with the analysis made. For example,

mcdcov offers the menu shown in Figure 2. If the input argument ‘classic’ is also set to

one in the call to the main function, some buttons also yield the figures associated with the

classical analysis. To illustrate, the plots in Figure 3 are the result of computing

>> out=mcdcov(X,’classic’,1)

and pressing the buttons ‘Tolerance ellipse’ and ‘Index plot of the distances’. We see in

Figure 3(a) that the robust and the classical tolerance ellipse are superimposed on the same

plot which is easier for comparison. To generate plots, one can also set the input argument

‘plots’ equal to zero, and make a separate call to the makeplot function. In our example, by

typing

>> out=mcdcov(X,’classic’,1,’plots’,0)

>> makeplot(out,’classic’,1)
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Figure 2: The graphical user interface invoked by the makeplot function, applied to an

MCDCOV attribute.
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Figure 3: Analysis of the Star data set : (a) data with 97.5% classical and robust tolerance

ellipses; (b) Index plot of the Mahalanobis distances.

The appearance of the graphical menu can be avoided by adding the name of the desired

graph as input argument to the makeplot function. To generate Figure 1 we could e.g. use

the commands
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>> out=mcdcov(X,’plots’,0)

>> makeplot(out,’nameplot’,’dd’)

>> makeplot(out,’nameplot’,’ellipse’)

whereas Figure 3 can be created by typing

>> out=mcdcov(X,’classic’,1,’plots’,0)

>> makeplot(out,’nameplot’,’ellipse’,’classic’,1)

>> makeplot(out,’nameplot’,’mahdist’,’classic’,1)

2.2 High dimensional estimators

If X contains more variables than observations (p À n) its covariance structure can be

estimated by means of a principal component analysis (PCA). In general, PCA constructs

a new set of k ¿ p variables, called loadings, which are linear combinations of the orig-

inal variables and which contain most of the information. These loading vectors span a

k-dimensional subspace. Projecting the observations onto this subspace yields the scores ti

which for all i = 1, . . . , n satisfy

ti = P T
k,p(xi − µ̂x) (3)

with the loading matrix P p,k containing the k loading vectors columnwise, and µ̂x being an

estimate of the center of the data. From here on, the subscripts to a matrix serve to recall

its size, e.g. P p,k is an p × k matrix. In classical PCA these loadings vectors correspond

with the k dominant eigenvectors of S, the empirical covariance matrix of the observations

xi, whereas µ̂x is just the sample mean. As a byproduct of a PCA analysis, an estimate of

the covariance structure of X can be obtained by the matrix product

Σ̂p,p = P p,kLk,kP
T
k,p (4)

with Lk,k a diagonal matrix containing the eigenvalues from the PCA analysis.

A robust PCA method yields robust loadings P , robust eigenvalues L, a robust center

µ̂x and robust scores according to (3). Our toolbox contains two robust PCA methods. The

first one, called RAPCA [11], is solely based on projection pursuit, and is very fast. The

second method, ROBPCA [12] combines projection pursuit ideas with the MCD estimator

and outperforms RAPCA in many situations. The computation time of ROBPCA is still
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very reasonable although slower than RAPCA (e.g. it takes only 4.7 seconds on a Pentium

IV with 2.40 GHz to perform ROBPCA on a data set with n = 30 and p = 2050).

Example 2: We will illustrate ROBPCA and its diagnostic tools on the Octane data set [13]

which consists of n = 39 NIR-spectra of gasoline at p = 251 wavelengths. When we would

know the optimal number of components k, we could call the robpca method with k specified,

e.g.

>> out=robpca(X,’k’,3)

Otherwise, we need to select the number of principal components k. The function call is

then just simply

>> out=robpca(X)

which generates a scree plot. This is a graph of the monotone decreasing eigenvalues. The

optimal number k is then often selected as the one where the kink in the curve appears.

From the scree plot of the Octane data in Figure 4(a), we decide to retain k = 3 components

for further analysis. To visualize and to classify the outliers, we can make a (score) outlier
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Figure 4: PC analysis of the Octane data set : (a) Screeplot ; (b) Score diagnostic plot.

map. For each observation, it displays on the x-axis the score distance SDi within the PCA

subspace

SDi =
√

tT
i L−1ti (5)
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and on the y-axis the orthogonal distance to the PCA subspace

ODi = ||xi − µ̂x − P p,kti||. (6)

This yields a classification of the observations as summarized in Table 1: regular data (with

small SD and small OD), good PCA-leverage points (with large SD and small OD), orthogo-

nal outliers (with small SD and large OD) and bad PCA-leverage points (with large SD and

large OD). The latter two types of observations are highly influential for classical PCA as

this method tries to make all orthogonal distances as small as possible. For more information

on this outlier map and the horizontal and vertical cut-off values, we refer to Reference [12].

On the outlier map of the Octane data in Figure 4(b) we immediately spot the samples 25,

26, 36-39 as bad PCA-leverage points. It is known that these samples contain added alcohol,

hence their spectra are indeed different from the other spectra. This becomes very clear

from the outlier map.

Table 1: Overview of the different types of observations based on their score distance and

their orthogonal distance.

Distances small SD large SD

large OD orthogonal outlier bad PCA-leverage point

small OD regular observation good PCA-leverage point

3 Robust calibration

3.1 Low dimensional regressors

The multiple linear regression model assumes that in addition to the p regressors or x-

variables, a response variable y is measured, which can be explained as an affine combination

of the predictors. More precisely, the model says that for all observations (xi, yi) with

i = 1, . . . , n, it holds that

yi = β0 + β1xi1 + · · ·+ βpxip + εi = β0 + βT xi + εi i = 1, . . . , n (7)

where the errors εi are assumed to be independent and identically distributed with zero mean

and constant variance σ2. Applying a regression estimator to the data yields p+1 regression

coefficients θ̂ = (β̂0, . . . , β̂p). The residual ri of case i is defined as yi − ŷi = yi − θ̂
T
xi.
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The ordinary least squares (OLS) estimator minimizes the sum of the squared residuals,

but is very sensitive to outliers. Our toolbox contains the Least Trimmed Squares (LTS)

estimator [9] which minimizes the sum of the h smallest squared residuals, or

θ̂LTS = min
θ

h∑
i=1

(r2)i:n (8)

Note that the residuals are first squared, and then ordered. The interpretation of the h value

is the same as for the MCD estimator, and should be chosen between n/2 and n. Taking h =

n yields the OLS estimator. The MATLAB function ltsregres contains an implementation

of the FAST-LTS algorithm [14] which is similar to the FAST-MCD method. The output

of ltsregres includes many graphical tools for model checking and outlier detection, such

as a normal quantile plot of the residuals, and a residual outlier map. The latter displays

the standardized LTS residuals (the residuals divided by a robust estimate of their scale)

versus the robust distances obtained by applying the MCD estimator on the x-variables. Its

interpretation will be discussed in Section 3.2.

If we want a reliable prediction of q > 1 properties at once, based on a set of p explanatory

variables, the use of a multivariate regression method is appropriate. The linear regression

model is then formulated as

yi = β0 + BT xi + εi i = 1, . . . , n (9)

with yi and εi being q-dimensional vectors that contain the response values, respectively the

error terms of the ith observation with covariance matrix Σε.

To cope with such data, we can use the MCD-regression method [15, 16]. It is based on

the MCD estimates of the joint (x, y) variables and thereby yields a highly robust method.

Within our toolbox, this method can be called with the mcdregres function.

3.2 High dimensional regressors

In case the number of variables p is larger than the number of observations n, there is no

unique OLS solution, and neither can the LTS estimator be computed. Moreover, in any data

set with highly correlated variables, called multicollinearity, both OLS and LTS have a high

variance. Two very popular solutions to this problem are offered by Principal Component

Regression (PCR) and Partial Least Squares Regression (PLSR). Both methods first project
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the x-data onto a lower dimensional space without loosing too much important information.

Then a multiple or multivariate regression analysis is performed in this lower dimensional

design space.

More precisely, both PCR and PLSR assume the following bilinear model which expresses

the connection between the response variable(s) and the explanatory variables as:

xi = µx + P p,kti + f i (10)

yi = µy +Aq,kti + gi (11)

with ti the k-dimensional scores, k ¿ p and q ≥ 1.

To construct the scores ti, PCR applies PCA to the x-variables, whereas in PLSR they

are constructed by maximizing the covariance between linear combinations of the x and

y-variables. Robust versions of PCR and PLSR have been constructed in [16] and [17] with

corresponding MATLAB functions rpcr and rsimpls. In analogy with classical PCR and

PLSR, they apply ROBPCA on the x-variables, respectively the joint (x, y) variables. Next,

a robust regression is applied to model (11). For PCR we can use the LTS or the MCD

regression, whereas for PLSR a regression based on the ROBPCA results is performed.

Example 2 continued: Let us look again at the Octane data from Section 2.2. The

univariate (q = 1) response variable contains the octane number. We know from the previous

analysis that in samples 25,26,36-39 alcohol was added. We cannot use an ordinary least

squares regression since the data clearly suffers from multicollinearity, so we apply a robust

PCR analysis. We then first need to determine the optimal number of components k. To this

end, the robust cross-validated RMSE can be computed at the model with k = 1, . . . , kmax

components. For a formal definition, see [16]. This is a rather time-consuming approach,

but faster methods for its computation have been developed and will become part of the

toolbox [18]. Alternatively, a robust R2-plot can be made. To look at the RMSECV-curve,

the function call in MATLAB becomes:

>> out=rpcr(X,y,’rmsecv’,1)

Here, the robust RMSECV-curve in Figure 5(a) shows k = 3 as the optimal number of latent

variables (LV).

The output of the rpcr function also includes the score and orthogonal distances from the

robust PCA analysis. So by default the PCA-outlier map will again be plotted (Figure 4b).
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Figure 5: Analysis of the Octane data set : (a) Robust RMSECV-curve; (b) Regression

outlier map.

Table 2: Overview of the different types of observations based on their score distance and

their absolute residual.

Distances small SD large SD

large absolute residual vertical outlier bad leverage point

small absolute residual regular observation good leverage point

In addition, a residual outlier map is generated. It displays the standardized LTS residuals

versus the score distances, and can be used to classify the observations according to the

regression model. As can be seen from Table 2, we distinguish regular data (small SD and

small absolute residual), good leverage points (large SD but small absolute residual), vertical

outliers (small SD and large absolute residual), and bad leverage points (large SD and large

absolute residuals). Large absolute residuals are those that exceed
√

χ2
1,0.975 = 2.24. Under

normally distributed errors, this happens with probability 2.5%. The vertical outliers and

bad leverage points are the most harmful for classical calibration methods as they disturb

the linear relationship.

Note that the observations that are labeled on the outlier map are by default the three

cases with the largest score distance, and those three that have the largest absolute stan-

dardized residual. To change these settings, one should assign different values to the ‘labod’,
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‘labsd’ and ‘labrd’ input arguments. For example, Figure 5(b) was the result of

>> makeplot(out,’labsd’,6,’labrd’,2)

In multivariate calibration (q > 1) the residuals are also q-dimensional with estimated co-

variance matrix Σ̂ε. The outlier map then displays on the vertical axis the residual distances,

defined as

ResDi =

√
rT

i Σ̂
−1

ε ri

with cut-off value
√

χ2
q,0.975.

4 Classification

Classification is concerned with separating different groups. Classification rules or discrimi-

nant rules aim at finding boundaries between several populations, which then allow to classify

new samples. We assume that our data are split into m different groups, with nj observa-

tions in group j (and n =
∑

j nj). The Bayes discriminant rule classifies an observation to

the group j for which the discriminant score dQ
j (x) is maximal, with

dQ
j (x) = −1

2
ln|Σj| − 1

2
(x− µj)

TΣ−1
j (x− µj) + ln(pj). (12)

Here, µj and Σj are the center and (non-singular) covariance matrix of the jth population,

and pj is its membership (or prior) probability. The resulting discriminant rule is quadratic in

x, from which the terminology ’quadratic discriminant analysis’ is derived. If the covariance

structure of all groups is equal, or Σj = Σ, the discriminant scores reduce to

dL
j (x) = µT

j Σ−1x− 1

2
µT

j Σ−1µj + ln(pj) (13)

which is linear in x.

Classical classification uses the group means and covariances in (12) and (13), whereas the

membership probabilities are often estimated as nj/n. In robust discriminant analysis [19]

the MCD estimates of location and scatter of each group are substituted in (12). For the

linear case, we can use the pooled MCD scatter estimates as an estimate for the overall Σ.

Finally, the membership probabilities can be robustly estimated as the relative frequency

of regular observations in each group, which are those whose flag resulting from the MCD

procedure is equal to one.
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One also needs a tool to evaluate a classification rule, i.e. we need an estimate of the as-

sociated probability of misclassification. Our MATLAB function contains three procedures.

The apparent probability of misclassification counts the (relative) frequencies of badly classi-

fied observations from the training set. But it is well known that this yields a too optimistic

estimate as the same observations are used to determine and to evaluate the discriminant

rule. With the cross-validation approach the classification rule is constructed by leaving out

one observation at a time and then one sees whether this observation is correctly classified or

not. Because it makes little sense to evaluate the discriminant rule on outlying observations,

one could apply this procedure by leaving out the non-outliers one by one, and counting the

percentage of badly classified ones. This approach is rather time-consuming, especially at

larger data sets, but approximate methods can be used [18] and will become available in the

toolbox. As a third and fast approach, the proportion of misclassified observations from the

validation set can be computed. Because it can happen that this validation set also contains

outlying observations which should not be taken into account, we estimate the misclassifi-

cation probability MPj of group j by the proportion of non-outliers from the validation set

that belong to group j and that are badly classified.

Example 3: The Fruit data set analyzed in [19] was obtained by personal communication

with Colin Greensill (Faculty of Engineering and Physical Systems, Central Queensland

University, Rockhampton, Australia) and resumed here. The original data set consists of

2818 spectra measured at 256 wavelengths. It contains 6 different cultivars of a cantaloupe.

We proceed in the same way as in [19] where only 3 cultivars (D, M, and HA) were considered,

leaving 1096 spectra. Next a robust principal component analysis was applied to reduce the

dimension of the data. It would be dangerous to apply classical PCA here as the first

components could be highly attracted by possible outliers and would not give a good low-

dimensional representation of the data. (Also in [20] it was illustrated that preprocessing

high dimensional spectra with a robust PCA method resulted in a better classification.) For

illustrative purposes two components were retained and a linear discriminant analysis was

performed. To perform the classification, the data were randomly split up into a training set

and a validation set, consisting of 60% resp. 40% of the observations. It was told that the

third cultivar HA consists of 3 groups obtained with different illumination systems. However,

the subgroups were treated as a whole since it was not clear whether they would behave
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differently. Given this information the optional input argument ’alpha’ which measures the

fraction of outliers the MCD-algorithm should resist, was set to 0.5. The MATLAB call to

rda additionally includes the training set X, the corresponding vector with group numbers

g, the validation set Xtest and its group labels gtest, and the method used (’linear’ or

’quadratic’):

>> out=rda(X,g,’valid’,Xtest,’groupvalid’,gtest,’alpha’,0.5,’method’,’linear’)

For the fruit data, we obtain p̂D = 51%, p̂M = 13% and p̂HA = 36% whereas the misclas-

sification probabilities were 16% in cultivar D, 95% in cultivar M, and 6% in cultivar HA.

Cultivar M’s high misclassification probability is due to its overlap with the other groups

and because of its rather small number of samples (nM = 106) in contrast to the other 2

groups (nD = 490 and nHA = 500). The misclassification probability of HA on the other

hand is very small because its estimate does not take into account the outlying data points.

In Figure 6 a large group of outliers is spotted on the right side. The 97.5% tolerance el-

lipses are clearly not affected by that group of anomalous data points. In fact, the outlying

group coincides with a subgroup of the cultivar HA which was caused by the change in the

illumination system.
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Figure 6: Analysis of the Fruit data set: 97.5% robust tolerance ellipses for each cultivar

obtained from a linear discriminant rule.

Note that when data are high-dimensional, the approach of this section can not be applied

anymore because the MCD becomes uncomputable. In the example of the fruit data, this was

solved by applying a dimension reduction procedure (PCA) on the whole set of observations.
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Instead, one can also apply a PCA method on each group separately. This is the idea behind

the SIMCA method (Soft Independent Modeling of Class Analogy) [21]. A robust variant of

SIMCA can be obtained by applying a robust PCA method, such as ROBPCA (Section 2.2),

within each group. This approach is currently under development [22].

5 Availability and outlook

LIBRA, the MATLAB library for Robust Analysis, can be downloaded from one of the

following web sites:

http://www.wis.kuleuven.ac.be/stat/robust.html

http://www.agoras.ua.ac.be/

These programs are provided free for non-commercial use only. They can be used with

MATLAB 5.2, 6.1 and 6.5. Some of the functions require the MATLAB Statistics toolbox.

The main functions currently included in the toolbox are listed in Table ??. In the near

future, we will add implementations of fast methods for cross-validation [18], S-estimators of

location and covariance [23], S-estimators of regression [24], the LTS-subspace estimator [25],

an adjusted boxplot for skewed distributions [26], and robust SIMCA [22].
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Function Description

Robust estimators of location/scale/skewness

mlochuber M-estimator of location, with Huber psi-function.

mloclogist M-estimator of location, with logistic psi-function.

hl Hodges-Lehmann location estimator.

unimcd MCD estimator of location and scale.

mad Median absolute deviation with finite sample correction factor (scale).

mscalelogist M-estimator of scale, with logistic psi-function.

qn Qn-estimator of scale.

adm Average distance to the median (scale).

mc Medcouple, a robust estimator of skewness.

Robust multivariate analysis

l1median L1 median of multivariate location.

mcdcov Minimum Covariance Determinant estimator of multivariate location

and covariance.

rapca Robust principal component analysis (based on projection pursuit).

robpca Robust principal component analysis (based on projection pursuit

and MCD estimation).

rda Robust linear and quadratic discriminant analysis.

robstd Columnwise robust standardization.

Robust regression methods

ltsregres Least Trimmed Squares regression.

mcdregres Multivariate MCD regression.

rpcr Robust principal component regression.

rsimpls Robust partial least squares regression.

Plot functions

makeplot creates plots for the main statistical functions (including residual plots

and outlier maps).

normqqplot normal Quantile-Quantile plot.

Classical multivariate analysis and regression

ols Ordinary (multiple linear) least squares regression.

classSVD Singular value decomposition if n > p.

kernelEVD Singular value decomposition if n < p.

cpca Classical principal component analysis.

mlr Multiple linear regression (with one or several response variables).

cpcr Classical principal component regression.

csimpls Partial least squares regression (SIMPLS).

cda Classical linear and quadratic discriminant analysis.

Table 3: List of the current main functions in LIBRA, the MATLAB Library for Robust

Analysis. 21


